�title * Mergeformat �Why Texture Compression�? Why VQ?

�
Texture mapping is a commonly used method to improve the visual richness of 3D computer graphics. However, the use of texture mapping requires significant memory resources, both in terms of memory size and bandwidth. Texture map compression is one method to help reduce these requirements.

This paper addresses to two questions related to texture compression. (1) What is the motivation for rendering from compressed textures? And (2), why did ATI choose vector quantization (VQ) over other compression algorithms for the RagePro product?

Why compressed textures?

Image compression algorithms such as JPEG, Microsoft TREC, and vector quantization (VQ) typically enable texture maps to be compressed by a factor of up to 10x with little image quality loss. A graphics controller which is able to render directly from such compressed textures can take advantage of the compression to provide improvements in both texture richness and rendering performance.

Consider today’s typical 2D/3D PCI graphics card which includes 2 Mbyte of local memory. Once front, back, and Z buffers for a 640x480x16 display are allocated from this memory pool only 0.25 Mbyte remain for texture storage. This remaining memory can support 2 uncompressed 256x256x16 textures or, say, 14 compressed textures (7:1 compression). An increase in the effective texture store of such magnitude clearly allows for a much richer and more diverse texture set.

Rendering performance increases due to the use of compressed textures stem from several factors. First, and most obviously, compressed textures dramatically reduce the bandwidth required for texture map reads, thereby freeing up bandwidth which, when reallocated to other rendering functions, can result in a performance boost.

A graphics controller which both supports rendering from compressed textures and includes an on-chip texture cache can achieve additional performance improvements by caching the textures in compressed form. Caching the textures in compressed form effectively increases the size of the on chip cache, reducing cache read miss rates and thus further reducing texture bandwidth (and increasing performance).

Reducing the memory footprint of textures through compression can also contribute to performance improvements. By reducing the memory footprint of textures, compression enables a larger number of an application’s textures to fit in fast texture memory. This is particulary significant for non-AGP systems. In non-AGP systems, if an application’s textures do not fit entirely in local graphics memory the application must page textures in and out of local memory across the PCI bus. This results in performance degradation because no graphics processing is achieved during the time in which textures are being transfered across the bus.

Compression Options

In evalulating algorithms for use to compress texture maps it is important to consider how texture maps are used. Typically, texture maps are generated (and therefore compressed) once and then subsequently read (and therefore decompressed) each time a display image is rendered. Thus, it is much more important that a graphics controller include hardware texture map decompression than hardware texture map compression. In fact, graphics controllers often omit hardware texture map compression (thereby eliminating additional silicon cost) and instead rely on software to perform the one time texture map compression.

The following sections describe DCT block based and vector quantization compression algorithms, two compression algorithms commonly considered for use in texture map compression. The descriptions focus on texture map decompression rather than compression, since this is the task which must be performed in hardware by the graphics accelerator.

�DCT Block Based Compression

The JPEG format and the TREC format use a discrete cosine transform (DCT) based compression scheme. Such schemes convert 8 by 8 blocks of pixels into frequency samples, reduce the resolution of the frequency samples that are less important to human visual perception, and then encode the samples in a compressed coded format.

To retrieve a texel from a DCT block compressed texture map, the first step is to determine in which 8 by 8 block the desired texel resides. The starting address and size of the block in memory is then determined. This is a non-trivial task because the size of the compressed blocks in memory is not constant. All of the compressed data for the entire block is then retrieved from memory. The variable length code by which the data is compressed is then reversed, resulting in 64 frequency samples. The frequency samples are then reordered, multiplied by 64 pre-determined quantization factors, then transformed into an 8 by 8 grid of texels via an inverse discrete cosine transform (IDCT). In addition to generating the desired texel, this also generates the other 63 texels in the block whether they are needed or not. The reordering and IDCT steps each require buffering the entire block, which consumes on-chip memory and requires a significant amount of time. For each color component the inverse quantization requires 64 multiplications, and the IDCT step requires on the order of 100 multiplications and 500 additions.

There are many variations of the basic DCT-based decompression algorithm described above, but they all translate into hardware-intensive additions and multiplications and deep pipelining (multiple, chained logic stages each performing a small part of the decompression task). Talisman, a proposed graphics architecture that extensively uses TREC compression, partially deals with the pipeline delay and hardware-expense of the block based decode by introducing a cache for uncompressed texels as well as a cache of compressed texels.

Texel flow for DCT Block-Based Decompression

�EMBED Visio.Drawing.4��� �Vector Quantization Compression

Vector Quantization (VQ) is a algorithm used for compression in many forms of digital signal processing. In VQ image compression, a texture map is divided into a set of blocks. Each block is typically 2 by 2 texels or 4 by 4 texels. A codebook is then generated which is a representative sample of all of the blocks in the image. Each entry in the codebook is also a 2 by 2 or 4 by 4 set of texels. Once a codebook has been generated, an index into the codebook is selected for each block in the image and placed in an index map. The index selected to represent each block is the index to the codebook entry which most closely resembles the block. The result of the VQ compression process is an encoded texture map consisting of a codebook and an index map.

Retrieving a texel from a VQ compressed texture map is a quite simple. First, the block to which the texel belongs is identified. Next, the memory address of the block within the index map is determined. This is easy because each index within the index map is the same size. The index is then retrieved from memory and used to select an entry from the codebook. Finally, the appropriate texel is selected from the codebook entry.

Texel flow for VQ Decompression

�EMBED Visio.Drawing.4���

Why VQ Compression?

Advantages of VQ

Less hardware is required to decompress VQ texture maps than textures maps compressed with a DCT based algorithm. For VQ decompression, a codebook look-up-table is the only major additional hardware resource required (compared with numerous add/multiply units and pipeline stages for the IDCT). Moreover, because this look-up-table is a simple RAM, it can be easily be shared amoung other chip functions. For instance, the codebook RAM can revert to texture cache memory if the graphics controller is not rendering from compressed textures.

VQ decompression is low latency. Because VQ decompression can be implemented as a simple table lookup (no adds or multiplies), a texel can typically be decompressed in 1 clock cycle. This avoids the need to introduce additional structures within the graphics controller to compensate for long decompression latencies.

VQ compression provides a fixed compression ratio. Because of the fixed compression ratio it is easy to randomly address and decompress texels within the compressed texture map. The fixed compression ratio also simplifies the task of texture heap management, since the size of a compressed map is known prior to compression.

With VQ compression, it is possible store textures in a compressed form within the on chip cache, effectively increasing the cache size.

Disadvantages of VQ

With VQ compression, the graphics chip and driver must manage codebooks associated with compressed texture maps. (But, of course, this management can be handled in much the same way as the palettes associated with CI8 textures.)

The fact that VQ compression provides a fixed compression ratio is also a disadvantage in that there is not much freedom to tradeoff image quality versus compression ratio.

Ultimately, ATI chose vector quantization as the compression scheme for use within RagePro due to VQ’s ability to provide the advantages of texture map compression (richer textures, faster rendering) at a managable level of silicon complexity and expense.

�

�

�

ATI Research, Inc.

White Paper

© 1997 ATI Research, Inc.		Page �page �1� of �numpages �3�

	�title * Mergeformat �Texture Map Compression�

© 1997 ATI Research, Inc.		Page �page
